Binc IMAP manual (Version 2.0)

Andreas Aardal Hanssen, Erwin Hoffmann

March 1, 2024

Contents

Introducing Binc IMAP
1.1 Scope and requirements

Installing Binc IMAP

2.1 Downloading the package and requirements
2.2 Slashpackage installation
2.3 Configuring Binc IMAP
2.3.1 Network Service
232 TLS
2.3.3 Authentication Service L.
2.34 Logging e
2.3.5 Security
2.3.6 Maildepot settings
The Binc IMAP Depot
3.1 Maildir & mbox
3.2 Maildir+4. oL
3.3 IMAPdir.

Binc IMAP - Technical Documentation
4.1 Object Oriented Design: Brokers, Depots, Operators, 10 . . .
4.2 Broker

4.2.1 BrokerFactory
4.3 Operators oo
4.3.1 Command
4.4 Depot e
4.4.1 DepotFactory
4.42 Mailbox
4.5 IOFactory
4.5.1 Logging information
4.5.2 Syslog Device 0L
4.5.3 Protocol Dumping
4.6 Session

10
11
11
12
14
15
15

17
17
18
18

CONTENTS

4.6.1 Session Parameters 27
4.6.2 Checkpassword Interface 27

Chapter 1

Introduction

“As an alternative to existing similar IMAP servers, Binc IMAP
strives to be very easy to use, but robust, stable and secure.”

Welcome to Binc IMAP, a project started December 2003 by Andreas Aardal
Hanssen. Binc IMAP is an open source IMAP project which differs from
existing IMAP projects. Here is a list of the project goals:

1. Binc IMAP will always have a helpful, hospitable community.

e Although it is expected that users of Binc IMAP do their home-
work before posting to the mailing list, the server author and
community of the Binc IMAP project will be friendly and will
approach everyone with respect. The same behavior is expected
from those who post to the list.

e There will be no RTFM! on the project’s mailing list. Flaming
and personal insults on the project’s mailing list will result in
banning of the originator.

e The community is encouraged to pay back to the project’s con-
tributors by sharing their own experience and contributions to
Binc IMAP through the GPL license.

2. Binc IMAP will not compete with other IMAP projects

e Under no circumstance will this project be in market driven com-
petition with other IMAP servers.

e Binc IMAP will first and foremost be a quality driven project.
e This project is meant to influence the community of authors of
similar network protocols and servers, and hopes to increase the

general quality of software that is used all over the globe and
beyond.

! According to acronymfinder.com, RTFM stands, among many other suggestions, for
“Read The Fscking Manual” (fsck is a Unix filesystem checker)

CHAPTER 1. INTRODUCING BINC IMAP

3. Binc IMAP provides security through good design

A well designed server is less exposed to bugs than a poorly de-
signed server.

The server will strive to use every kind of security enhancing fea-
ture, while keeping the implementation details as good and simple
as possible.

The source is open and downloadable. Potential bugs and/or
nasty pieces of code are easily uncovered when the whole com-
munity is able to study every line of code in detail. Bugs should
always be reported to the project’s mailing list.

4. Binc IMAP is modular

Where possible and practical from both a usage and design stand
point, modules will be seperated and replaceable through plug-
gable extension support. Examples of future replaceables and en-
hancements include:

— authentication modules (shadow, PAM, LDAP)

— search modules

— protocol extensions modules (namespaces, ACL, shared fold-

ers)

— mailbox formats (Maildir, mbox, MySQL, POP3 proxy)
With a modular and good object oriented design, it will be easy to
quickly understand what every method and function does. This
will increase third party developers’ ability to write extensions
and modifications fast.

5. Binc IMAP favors quality over quantity

Binc IMAP’s releases are milestones. We strive for perfection.

Work on improving the existing design and extensibility will al-
ways go ahead of adding new features.

Through extensive module support, the community is encouraged
to contribute to the adding and testing of new features.

Core design and implementation will always focus on quality.

This document serves as the server’s main documentation.

1.1 Scope and requirements

Binc IMAP is a IMAP server suited for Maildirs, however not restricted to
those. It should work with all MTAs providing Maildir support, but it is
design to work mainly with gmail or s/qmail or other derivatives.

1.1. SCOPE AND REQUIREMENTS 7

Here, it supports the virtual mail managers:
e vpopmail
e vmailmgr

Binc IMAP includes no networking stack and thus depends on particular
TCP/IP services like

e ucspi-ssl’s sslserver or perhaps
e ucspi-tcp6’s tcpserver.

The current versions of ucspi-tcp6 and ucspi-ssl require the installa-
tion of the fehQlibs.

In the layered communication model of Binc IMAP TLS encryption, ci-
pher and X.509 certificate management needs to be provided on the network
stack, which is the domain of sslserver. Apart from IMAPS services on
port 993, StartTLS over port 143 is possible, but not recommended.

Others, like inetd or xinetd could work in principle, but are not rec-
ommended. To use Binc IMAP together with stunnel or other programs
providing TLS capabilities should be possible, but was not tested.

CHAPTER 1. INTRODUCING BINC IMAP

Chapter 2

Installation

The installation procedure for Binc IMAP is designed to be quick and easy,
and in most cases you will get what you want at your first attempt. The
source code is designed to be able to compile on most UNIX-like platforms.

If you experience problems with compiling and installing this package
on your own platform, don’t hesitate to post your problem to the project’s
mailing list.

2.1 Downloading the package and requirements

Binc IMAP is available in the slashpackage source format to be installable
on all POSIX compliant Unix systems, given a C++ compiler is available
such as:

e GCC 10.2

e Clang 13.0

Binc IMAP will work on 32 and 64 bit systems. You can download the
package from: https://www.fehcom.de/binc/binc.html.

2.2 Slashpackage installation

Before going to install Binc IMAP you have probably setup
e ucspi-ssl,
e ucspi-tcp6, and
e s/qmail (at /var/qmail)

thus you are familiar with the /slashpackage installation procedure:

https://www.fehcom.de/binc/binc.html

10 CHAPTER 2. INSTALLING BINC IMAP

1. cd /package
2. tar -xzf <path>/bincimap-2.x.y.tgz
3. c¢d mail/bincimap/bincimap-2.x.y

4. package/install

Unlike previous Binc IMAP versions, autoconf-tools are not used here;
and there is no need for any adjustments, apart from the following:

e Edit conf-gmail, if s/qmail (or gmail) is not installed at its default
location.

e Edit conf-man, if you like to install Binc IMAPs man-pages at some
self-defined locations.

Individual installation steps are as usual:

package /compile — just compile.

package/man — install man-pages.

package /upgrade — in case new Binc IMAP packages are going to get
installed.

package/deploy — install the executables at their destination according
to conf-home .
2.3 Configuration

Unlike the previous version of Binc IMAP, no configuration files are required;
the entire setting can be done

e via environment variables — preferable given by means of envdir, or

e by arguments handed over to bincimap-up or bincimapd.

Note: Environment variables overwrite the command line arguments!

Assuming Binc IMAP is supervised by DJB’s daemontools (or a vari-
ant, like runit), pre-configured run-scripts are available in the installation’s
./service directory:

e bincimap/run — Binc IMAP running un-encrypted under tcpserver
on port 143.

e bincimaps/run — IMAPS services provided by sslserver over port 993.

2.3. CONFIGURING BINC IMAP 11

e bincimapstls/run — Binc IMAP using StartTLS on port 143 while
using sslserver.

Thus, we have a sharing of responsibilities:

1. sslserver is responsible to provide TLS encryption services and X.509
certificate management.

2. bincimap-up takes care of the IMAP configuration and the user log-in
(authentication), and

3. bincimapd is the actual work-horse providing mail depot services and
following the IMAP requests from you client.

2.3.1 Network Service

In Binc IMAP network services are available through

e tcpserver (from ucspi-tcp6; and other would do as well). This means
an unencrypted IMAP service on port 143. Apart from the commands
and the messages content, user names and passwords are readable in
cleartext from the network, though Binc IMAP support CRAM-MD5
as authentication method.

e sslserver is invokes providing StartTLS support. Binc IMAP is still
invoked on port 143 but using the environment variable 'UCSPITLS="+"’
announcing optional StartTLS service or with 'UCSPITLS="!"’ requir-
ing the client to start a StartTLS session.

e sslserver is bound to the IMAPS port 993. From the beginning, a
TLS session is setup. This is the preferred solution.

Other comparable solutions will probably work (ucspi-tls, stunnel in
conjunction with xinetd). However, in any case using TLS by any other ser-
vice, X.509 certificate and cipher management is now part of those programs
and not of Binc IMAP, which was the case in the previous versions.

2.3.2 TLS

Though Binc IMAP may announce STARTTLS, there are not network ca-
pabilities included here. Binc IMAP depends on some network daemons,
typically.

e sslserver or

e tcpserver

12 CHAPTER 2. INSTALLING BINC IMAP

Other servers (like xinetd or stunnel) can be used with caution. In any
case, environment variables providing information about the network peers
need to be given as detailed in tcp-env.

StartTLS within BincIMAP only can achieved with sslserver, or other
servers providing the UCSPI-TLS interface thus allowing a ’delayed’ TLS ne-
gotiation.

sslserver facilitates TLS 1.3 connectivity (TLS 1.0, 1.1 and 1.2 are cur-
rently supported as well) and need to be fed with the following minimal
crypto material:

e dhparam file (at least with 2048 bit size) for the legacy DLog Diffie-
Hellman key exchange.

e X.509 certificate (in PEM format) identifying the Binc IMAP server
and presented to the client.

e X.509 key file (in PEM format) used to digitally sign the TLS hand-
shake.

Other optional TLS material can also been provided:

e Location of the X.509 CA file (trust store) containing certificate au-
thorities with their public keys.

e CA path: The path to a set of CA files.

e Cipher list mainly to exclude unwanted TLS ciphers.

sslserver supports client certificate exchange and verification. However,
a client certificate does not substitute the authentication of the IMAP users.

2.3.3 Authentication Service

The authentication details in Binc IMAP follow this path:

1. bincimap-up is responsible to announce the authentication capabili-
ties. Currently, the following methods are known to Binc IMAP:

e LOGIN — userid and password in plain text,

e AUTHENTICATE PLAIN — concatenated userid and password base64
encoded,

e AUTHENTICATE LOGIN — wserid and password each base64 encode,
and

e AUTHENTICATE CRAM-MD5 — generating the challenge and deploy-
ing it to the authenticator.

2.3. CONFIGURING BINC IMAP 13

Others are subject of the forthcoming releases, in particular SCRAM and
ECRAM.

2. The

authenticator is a Pluggable Authentication Module (PAM) —

and not a library — setting up its own Unix context while communi-
cating with the Identity Provider (IdP). Given Binc IMAP works in
conjunction with (s/)gmail, we have as IdP:

The Unix system with regular Unix accounts (users), there home
directory with a Maildir (the <maildepot>).

VPopMail as system-wide (virtual) mail user for different do-
mains, each having virtual users here, and only providing <maildepot>
services.

VMailMgr acting a (virtual) mail user for a specific domain,
again each having virtual users here.

— It is the duty of the authentication PAM to chdir to the
user’s home directory and to setuid to the specific respon-
sible user. In the context of a virtual mail manager, this is
one of the user ids given in /var/gmail/virtualdomains.

3. The authentication methods: Given this scenario, the following choices
for an authenticator are possible:

(a
(b
(c

)
)
)
(d)

Unix account: Here you can use checkpassword.pl.
VPopMail: vchkpw.
VMailMgr: checkvpw.

gmail-authuser is s/gmail’s PAM taking simultaneously care of
all these methods.

4. The IdP’s backend is where the authentication information is stored.
Here we have:

The Unix password and/or shawdow password file (/etc/passwd)
with a salted password.

A local database of VPopMail or VmailMgr including the vir-
tual user’s and their passwords.

A SQL-based database.
A LDAP-based database.

A plain textfile (typically /var/qmail/users/authuser) used for
authentication purpose only without providing support for the
user’s home directory or <maildepot> as required for IMAP /POP3.

14 CHAPTER 2. INSTALLING BINC IMAP

5. It is important to understand, that Challenge/Response type authen-
tication (CRAM-MD5, APOP) requires the access to the plaintert password
to be fetched. With ECRAM (Enhanced CRAM) this situation will be

relaxed.

6. Binc IMAP announces PLAIN and LOGIN as authentication method au-
tomatically, while CRAM-MD5 is subject of the settings in the environ-
ment variable BINCIMAP_LOGIN including +CRAM-MD5.

The following table depicts the current authentication possibilities:

Method || oy 1w | LocIN | craM-MDS | PAM Module
Backend
Unix crypt yes yes no checkpasword.pl
VMailMgr yes yes no checkvpw
VPopMail yes yes yes vchkpw

Table 2.1: Supported authentication methods of Binc IMAP given different
PAMs and backends. Methods LOGIN and PLAIN expect the plain text
userid and password over FD 3; in case of a C/R method, additionally the
challenge has to be transferred to the authenticator [see: http://cr.yp.to/
checkpwd/interface.html].

— s/qmail’s gqmail-authuser can be used as wrapper for all these cases.
It enables a site to provide services for local Unix users, VPopMail, and
VMailMgr settings concurrently.

2.3.4 Logging

The logging details in Binc IMAP are set in a section called Log. Binc IMAP
recognized the following log options:

e multilog: Binc IMAP will log to stderr, which is the default input for
multilog (default).
Alternatively, use the environment variable LOG_TYPE=multilog to en-
able it.

e syslog: Binc IMAP will log using multilog.
The environment variable LOG_TYPE=syslog can be used to enable this.

If Binc IMAP is configured to log using syslog, it will log using the syslog
facility described via the environment variable LOG_USER. Here you can tailor
the logging by the following environment variables:

e The syslog facility: SYSLOG_FACILITY=LOG_DAEMON or perhaps
SYSLOG_FACILITY=LOG_MAIL.

http://cr.yp.to/checkpwd/interface.html
http://cr.yp.to/checkpwd/interface.html

2.3. CONFIGURING BINC IMAP 15

e Up to eight tags embedded in the environment variables LOG_LOCALO
to LOG_LOCAL7 can be applied for a customized logging.

2.3.5 Security

The current Binc IMAP does not provide a ’jailing’ service as previous ver-
sions did. Thus it is depending on the invoking application like sslserver or
tcpserver to provide a ’secure’ (say setuid) environment.

Both, tcpserver and sslserver provide these means to run under a dedi-
cated and low privileged user. In case other network servers are considered,
envuidgid from the Daemontools package would provide a comparable so-
lution.

Lets consider an example given a run script:

#!/bin/sh

exec 2>&1

HOSTNAME=‘hostname*‘

BINCU=‘id -u gmaild®

BINCG=‘id -g qmaild®

. /var/gmail/ssl/ssl.env

exec envdir ./env sslserver -seV -Rp -1 $HOSTNAME -u $BINCU -g $BINCG :0 imaps\
bincimap-up -- /var/gqmail/bin/qmail-authuser bincimapd Maildir

1. sslserver is started with root privileges binding to port 993 (imaps).

2. sslserver drops its privileges and bincimap-up is running with the
user/group credentials given as $BINCU and $BINCG.

3. Upon successful invocation of gqmail-authuser and subsequent au-
thentication, the effective user is the (Unix) owner of the Maildir.

< In order to achieve the last step, the authentication module needs to

be ’sticky’. In case of a Unix authentication is has to belong to root; in case
of a virtual domain manager it has (at least) to belong to the respective user.

2.3.6 Maildepot settings

Binc IMAP uses the term 'maildepot’ to reference one of the following:

1. A Maildir++ directory.

2. A IMAPDdir directory.

For those, the following settings can be performed:

16

CHAPTER 2. INSTALLING BINC IMAP

e DEPOT = <depottype>

Sets the type of depot that Binc IMAP should use and how the con-
tents of an IMAP user’s mail path is interpreted. Currently, the two
supported depot types are

— Maildir++ (default),
— IMAPdir.

DELIMITER = <char>

allows to instruct Binc IMAP to obey the structure of an existing
maildepot created by other IMAP servers like Courier. Nested mail
directories are organized as concatenated sub directory names. The
"binding’ character is called 'delimiter’.

— DELIMITER=/ (default)
— DELIMITER=.

<path>

The <path> is given as first argument to bincimapd. It should be
given as Maildir in most cases without leading character like "./’ re-
sulting in ./Maildir. Also a trailing '/’ shall be omitted.

Some authentication modules like gmail-authuser only perform a se-
tuid to the user, if Maildir is used.

Chapter 3

The Binc IMAP Depot

The main role of an IMAP server is to give email clients an interface through
which they can authenticate and then access email and mailboxes located on
a (remote) mail server. The mails are stored on the mail servers in a special
structure, and this structure varies from system to system.

Most often we distinguish between the mailbox structure (or hierarchy
structure) and its format. The structure determines how the different mail-
boxes and submailboxes are stored, and the format decides how each and
every email is stored within one mailbox.

Binc IMAP uses the generic container object Depot to describe the map
between the hierarchy structure and its translation to selectable mailboxes
in IMAP. The Depot has two specializations: one for IMAPdir and one for
Maildir++-.

3.1 Maildir & mbox

Maildir
A Maildir is by Dan J. Bernstein’s definition identified by a directory
that contains the subdirectories

e cur,

e new,

e tmp
and nothing else.
mbox

When using the mbox storage format, the user’s INBOX is typically stored
at /var/spool/mail/<username>. Using this format, the mail depository

client must both have the path to the user’s INBOX and the path to the
user’s local mailbox depository, typically mail/.

17

18 CHAPTER 3. THE BINC IMAP DEPOT

3.2 Maildir+-+

The Maildir++ definition follows naturally from Maildir++ being an exten-
sion to Dan J. Bernstein’s Maildir format. However, although the directory
/Maildir/ itself is a standard representation of INBOX for Maildir clients, it
is not standard for other mailbox formats. With Maildir++, your mailboxes
and INBOX in particular must be a Maildir.

Courier-IMAP defines the hierarchy structure Maildir++, which provides
a way for existing Maildir users (Maildir is a mailbox format) to have multiple
mailboxes and submailboxes inside the directory that contains the default
mailbox “INBOX” (which often resides in ~/Maildir for each UNIX user).

Read more about the Maildir++ format at the following location:

e http://www.inter7.com/courierimap/README.maildirquota.html

Binc IMAP supports this mailbox structure with a few limitations and
a few enhancements:

e The maildirfolder file is not created inside each Maildir submailbox.
The reason for this is that this only works with mailbox formats that
store a mailbox inside a directory, such as Maildir.

e Maildir++ quotas are not supported.
e No Maildir++ restrictions to mailbox names apply (such as .Trash).

e Mailboxes inside a Maildir++ structure can be of any format, not just
Maildir.

3.3 IMAPdir

IMAPdir is Binc IMAP’s native mailbox structure. It is open and usable for
most existing local mail clients. Some architectural designs decisions:

e IMAPdir does not extend/change any mailbox formats; it merely de-
fines a way to describe mailboxes and submailboxes in a way that is
suitable for an IMAP server, with as few restrictions as necessary.

e The goal of the work behind this specification is to provide the commu-
nity with an unambiguous representation of a mailbox hierarchy where
a mailbox name has a one-to-one match against a file system repre-
sentation. The hierarchy and naming style is inspired by the IMAP4
protocol.

e Rather than being a completely new mailbox format, this specification
sets conventions on how to represent a mailbox hierarchy on a file
system, using existing mailbox formats. IMAPdir is not bound to any
protocol.

http://www.inter7.com/courierimap/README.maildirquota.html

3.3. IMAPDIR 19

Note that although IMAPdir has no restrictions with regards to mailbox
names, the protocol that uses IMAPdir might. For example, IMAP servers
will require the mailbox INBOX to be present.

IMAPdir works with any mailbox format where one mailbox can be iden-
tified by a file, a directory or a symbolic link. One entry in an IMAPdir folder
is a candidate for a mailbox.

If the IMAPdir client can not identify a directory entry as a selectable
mailbox, then the client must either skip the entry or mark it as invalid (in
IMAP, marked as \NoSelect).

e There is no limitation to the type of file system or the number of file
systems represented inside an IMAPdir.

e There are no reserved ordinary folder names such as "Sent", "Draft"
or "Trash".

e Clients of the mailboxes inside an IMAPdir folder must follow the re-
spective format and protocol conventions strictly.

The format of a mailbox representation in IMAPdir is a sequence of one
or more US-ASCII characters (32-126), encoded using the following rules:

e A dot . character represents a soft hierarchy delimiter with two ex-
ceptions:

— A leading dot represents the dot itself.
— A dot " preceded by a backslash "\’ represents the dot . itself.

e A backslash "\’ preceded by a backslash ’\’ represents the backslash
"\ " itself. For all other cases than before a dot ’.” or a backslash "\’, a
stray backslash "\’ character is considered an error.

e A backslash ’\’ as the first character of an entry is considered an error.

e All other characters represent themselves.

Note that the protocol used to fetch the mailbox using the structuring
IMAPdir convention may restrict the character set allowed. The clients must
in those cases translate the mailbox names to a selectable format.

As with Maildir++, submailboxes can not be represented in a recursive
fashion in the file system. The mailbox’ representation name will contain
the soft hierarchy delimiter character dot ’.’; and all mailboxes must reside
in the same root level directory.

20 CHAPTER 3. THE BINC IMAP DEPOT

IMAPdir mapping to Maildir and mbox

The following example shows the typical content of an IMAPdir stored
under the directory mail/. The file system column displays the contents as
viewed by the UNIX command ’1s -alF’.

File System IMAP Description
mail/INBOX -> /var/mail/paul | "INBOX" Symbolic link to mbox
mail/INBOX.old/ -> ../Maildir/ | "INBOX/old" Symbolic link to Maildir
mail /INBOX.outbox/ "INBOX/outbox" | Maildir

mail /work "work" mbox

mail/3rd. of July "3rd. of July" mbox
mail/Sent.2003.Jan/ "Sent/2003/Jan" | Maildir
mail/Sent.2003.Feb/ "Sent/2003/Feb" | Maildir
mail/Sent.2003.Mar/ "Sent/2003/Mar" | Maildir

mail/.foo " foo" mbox

In other multi level mailbox formats, INBOX is treated as a special case.

IMAPdir +<+— Maildir conversion
Binc IMAP includes the following Perls convenient scripts suited to real-
ize a bi-directional conversion between the IMAPdir and Maildir++ format:

e IMAPdir2Maildir++.pl (by Henry Baragar)
e Maildir+-+2IMAPdir.pl (by Henry Baragar)
e tomaildir++.pl: Adding all Maildir entries to the .subscribed file

e toimapdir.pl: Adding all IMAPdir entries to the .subscribed file

Those scripts are shipped without verification checks.

Chapter 4

Binc IMAP - Technical
Documentation

Binc IMAP uses either Maildir++ or a structure called IMAPdir to store
its set of mailboxes. IMAPdir is more or less similar to Maildir++, but
it provides more flexibility with regards to mailbox names and hierarchy
structure.

In a sense, IMAPdir takes all the goods from Maildir and adds root level
mailboxes, submailboxes both of regular root level mailboxes and of the spe-
cial mailbox INBOX, mail in mailboxes of any level, and with no restrictions.

In the root of the IMAPdir structure, Binc IMAP stores the list of a
user’s subscribed folders in a file called .subscribed. This file should only
be edited manually if you are confident with Binc: :Storage. Normally the
administrator and the IMAP user will leave this to Binc IMAP.

Binc IMAP’s Maildir backend (default) will temporarily create a lock
file called bincimap-scan-lock inside a Maildir when it is scanning for
mailbox changes and delegating unique message identifiers. This is to ensure
that UIDs are delegated exactly once to every message that has been detected
by any one Binc IMAP server instance.

Inside each Maildir, Binc IMAP stores two files that allow multiple
instances of the server to communicate the state and changes of the mailbox:

e bincimap-uidvalidity and

e bincimap-cache.

These files are safe to delete, although that will trigger UIDVALIDITY to
bounce and clients may have to resynchronize their local state.

21

22 CHAPTER 4. BINC IMAP - TECHNICAL DOCUMENTATION

4.1 Object Oriented Design: Brokers, Depots, Op-
erators, 10

I’s design is simple and modular. This makes it easy to maintain and extend.

Although the IMAP protocol is relatively complex, you will find that
Binc IMAP’s solution is surprisingly easy to grasp.

At the heart of Binc IMAP’s implementation lies the basic functionality
for Object Oriented Design provided by the ISO C++ standard and general
knowledge in the area of standard Design Patterns.

The main design components are:

e Architecture:

— The Broker
— The BrokerFactory

e Behavior:

— The Operator
— The Command

e Repository:

— The Depot
— The DepotFactory
— The Mailbox

e The IO

e The Session

4.2 Broker

One Broker holds a set of Operators. For each state Binc IMAP is in, the
BrokerFactory delegates exactly one Broker to hold the relevant Operator
objects.

Typically, an Operator can be assigned to more than one Broker. For
example, the Operator that serves the IMAP command "NOOP" (a command
that is available in all three IMAP states), NoopOperator, is available in all
Broker objects.

The Broker is responsible for first passing the Depot and the 1O singleton
to the appropriate IMAP command, generating a Operator object.

The Broker is also responsible for passing the resulting Operator object
to the Operator together with the Depot, generating the untagged responses
that come as a result of the processing.

4.3. OPERATORS 23

Operator *Broker::get(const string &name) const
{

if (operators.find(name) == operators.end()) return O;

return operators.find(name)->second;

}

4.2.1 BrokerFactory

The BrokerFactory knows three states:

e NONEAUTHENTICATED (realized by bincimap-up), where only generic
IMAP commands like "CAPABILITY” and ”ID” are honored (and or
course the potentially following "STARTTLS” and "AUTHENTICATE” com-
mands) are honored.

e AUTHENTICATED allowing the access to the Depot of the authenticated
userid.

e SELECTED allowing to perform operations on mails like ”STORE”.
The BrokerFactory manages the Broker objects:

e Given a state, the BrokerFactory provides a Broker that holds all the
Operator objects available to the client.

e This provides a modular and safe separation of the privileges available
at the different states in the IMAP session.

o The preauthenticate stub has a BrokerFactory that can only generate
Broker objects for the non-authenticated state.

Broker *BrokerFactory::getBroker(int state)

{
if (brokers.find(state) == brokers.end()) {
setLastError("No appropriate broker for state.");
return O;
}
return brokers[state];
}

4.3 Operators

An Operator is associated with an IMAP command such as "SEARCH" or
"AUTHENTICATE". In short, the Operator is used to perform an arbitrary
operation on a Mailbox.

24 CHAPTER 4. BINC IMAP - TECHNICAL DOCUMENTATION

e Typically, an Operator can be assigned to one or more Broker objects.

e Operators contain, among others, the two public methods: parse() and
process().

e When given the IO singleton as input, the parse() method generates
a Command object. This object can then be fed to process() together
with a Depot.

e When processing its command, an Operator is allowed to generate
untagged responses and it can also update the state of a Mailbox, the
Depot or the Session singleton.

Operator objects are assigned dynamically to each Broker, making it very
easy to write extensions that add or replace existing Operator objects using
Binc IMAP’s loadable module support.

4.3.1 Command

A Command object holds all information that was passed to the Operator
that served a specific IMAP command.

e Command objects are named. Examples of such names are "CHECK",
"SUBSCRIBE" and "LOGOUT".

e For the name "FETCH", the Command object is decorated with se-
quence set, optionally a section and so on. The parse() method in each
Operator is responsible for decorating the Command object.

The Command object is short-lived. It is created, decorated, passed on
to the Operator, then discarded.

4.4 Depot

A Depot is responsible for handling the different Mailbox objects, and it is
the mailbox structure authority.

e Given an IMAP mailbox path as input, a Depot can give the caller a
corresponding Mailbox object if it finds one that successfully identifies
the type of Mailbox.

e The Depot is also aware of what the default Mailbox type object is.
This Mailbox object is used when creating new IMAP mailboxes.

4.4. DEPOT 25

e Finally, the Depot is used to translate mailbox names to a represen-
tation on the file system and back. There are currently two special-
izations of the Depot object available: one for Maildir++ and one for
IMAPdir. Each has its own characteristics in how do translate the
mailbox hierarchy to the file system.

Mailbox *mailbox = depot.getSelected();
if (mailbox != 0) {
mailbox->closeMailbox () ;
depot.resetSelected();
mailbox = 0;

4.4.1 DepotFactory

The DepotFactory manages the Depot objects.

e New Depot objects are assigned to the DepotFactory in runtime. This
makes it easy to add new Depot objects using loadable modules.

e The Depot objects are registered and accessed via their names, such
as "Maildir++" or "IMAPdir".

e The DepotFactory gives individual users of Binc IMAP the option to
choose the Depot object that suits their needs the best.

if ((depot = depotfactory.get(depottype)) == 0) {
binclog << "bincimapd: pid " << pid
<< " Found no Depot for: " << depottype

<< ", Please check your configurations file under the Mailbox section\n";
bincLog.flush();

return false;

3

4.4.2 Mailbox

The Mailbox is an abstraction for Binc IMAP’s different backends.

e Bundled with Binc is a backend for Maildir. The class Maildir in-
herits Mailbox.

e In short, a Mailbox contains all methods needed for Binc IMAP to
serve a specific backend. It also holds a method to identify a Mailbox
of its own kind.

e All registered Mailbox objects are held by the Depot.

26 CHAPTER 4. BINC IMAP - TECHNICAL DOCUMENTATION

4.5 IOFactory

The IOFactory makes use of thee different streaming devices:

e StdIODevice — responsible for reading and writing to the network (FD

0/1).

e MultilogDevice — used for the logging to FD2. Here, you heed to define
the LOG_TYPE=multilog upon start.

e SyslogDevice — in charge for logging to the Syslog Facility. This is the
default device for logging. Alternatively, you can set LOG_TYPE=syslog.

The buffer sizes (in bytes) for StdI0Device are defined in globals.h:

e TRANSFER_BUFFER_SIZE = 1024;

e INPUT_BUFFER_LIMIT = 8192;

4.5.1 Logging information

bincimap-up and bincimapd are using different prefixes for logging but
common is the display of the <PID>:

e bincimap-up records [P addresses and user names. Both information
are fetched from the environment via TCPREMOTEIP and USER.

e bincimap logs user name, number of IMAP statements, and number
of read in writes (in byte).

4.5.2 Syslog Device

In order to customize the syslog feeding, the following environment variables
can be defined:

e LOG_USER=<loguser>, the default is LOG_DAEMON.

e LOG_LOCALO=<...> to LOG_LOCAL7=<...>.

It should be noted, that in case of syslog logging, it is possible to define
in the context of the virtual user (for bincimapd) separate different settings
using using specific LOG_USER and LOCAL variables for each domain.

For a qualified syslog logging, the environment variable TCPLOCALHOST is
required and used.

4.6. SESSION 27

4.5.3 Protocol Dumping

The analysis of the IMAP protocol flow can be analyzed be means of a
protocol dump: Use then environment variable PROTOCOLDUMP=yes and Binc
IMAP will record the entire IMAP session to a file:

e /tmp/bincimap-dump-<number>-<client-ip>-<random>

Beware, that this for debugging and investigation only! Passwords are
also recorded! The generated files could be quite large.

4.6 Session

The Session is a singleton object that holds information that is relevant
to the current IMAP session. Currently, the Session contains information
about:

e Global configuration (administrator settings)
e Local configuration (user settings)
e Command line arguments

e Folder option list

4.6.1 Session Parameters

The session details in Binc IMAP are now hard-coded and set up in the
header file globals.h.

Session timeouts (in seconds):
e IDLE_TIMEOUT — 30*60;

e AUTH_TIMEQUT = 60;

e AUTH_PENALTY = 5; (factor)

e TRANSFER_TIMEQUT — 20*60;
4.6.2 Checkpassword Interface
The checkpassword interface

checkpassword prog

checkpassword reads descriptor 3 through end of file and then closes de-
scriptor 3. There must be at most 512 bytes of data before end of file.

28 CHAPTER 4. BINC IMAP - TECHNICAL DOCUMENTATION

Call Interface
The information supplied on descriptor 3 is

e a login name terminated by \0,
e a password terminated by \0
e a timestamp terminated by \0,

and possibly more data. There are no other restrictions on the form of
the login name, password, and timestamp.

Exit Codes

o If the password is unacceptable, checkpassword exits 1.
o If checkpassword is misused, it may instead exit 2.

o If there is a temporary problem checking the password, checkpassword
exits 111.

Child called
If the password is acceptable, checkpassword runs prog. prog consists of
one or more arguments.

Compatible tools

There are other tools that offer the same interface as checkpassword. Appli-
cations that use checkpassword are encouraged to take the checkpassword
name as an argument, so that they can be used with different tools.

Note that these tools do not follow the getopt interface. Optional fea-
tures are controlled through (1) the tool name and (2) environment variables.

The password database

checkpassword checks the login name and password against /etc/passwd,
using the operating system’s getpwnam and crypt functions, supplemented
by getuserpw and getspnam if necessary. It rejects accounts with empty
passwords. It ignores the timestamp.

Other checkpassword-compatible tools have different interpretations of
login names, passwords, and timestamps. Both the login name and the pass-
word should be treated as secrets by the application calling checkpassword;
the only distinction is for administrative convenience. The timestamp should
include any other information that the password is based on; for example,
the challenge in a challenge-response system such as APOP.

4.6. SESSION 29

WARNING: getpwnam is inherently unreliable. It fails to distinguish
between temporary errors and nonexistent users. Future versions of get-
pwnam should return ETXTBSY to indicate temporary errors and ESRCH to
indicate nonexistent users.

Process-state changes

Before invoking prog, checkpassword sets up $USER, $HOME, $SHELL, its sup-
plementary groups, its gid, its uid, and its working directory.

Other checkpassword-compatible tools may make different changes to
the process state. It is crucial for these effects to be documented; different
applications have different requirements.

Taken from: https://cr.yp.to/checkpwd/interface.html

https://cr.yp.to/checkpwd/interface.html

	Introducing Binc IMAP
	Scope and requirements

	Installing Binc IMAP
	Downloading the package and requirements
	Slashpackage installation
	Configuring Binc IMAP
	Network Service
	TLS
	Authentication Service
	Logging
	Security
	Maildepot settings

	The Binc IMAP Depot
	Maildir & mbox
	Maildir++
	IMAPdir

	Binc IMAP - Technical Documentation
	Object Oriented Design: Brokers, Depots, Operators, IO
	Broker
	BrokerFactory

	Operators
	Command

	Depot
	DepotFactory
	Mailbox

	IOFactory
	Logging information
	Syslog Device
	Protocol Dumping

	Session
	Session Parameters
	Checkpassword Interface

